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ABSTRACT 

The field of evolutionary robotics has demonstrated the ability to automatically design the 

morphology and controller of simple physical robots through synthetic evolutionary 

processes. However, it is not clear if variation-based search processes can attain the 

complexity of design necessary for practical engineering of robots. Here we demonstrate an 

automatic design system that produces complex robots by exploiting the principles of 

regularity, modularity, hierarchy and reuse. These techniques are already established 

principles of scaling in engineering design and have been observed in nature, but have not 

been broadly used in artificial evolution. We gain these advantages through the use of a 

generative representation, which combines a programmatic representation with an 

algorithmic process that compiles the representation into a detailed construction plan. This 

approach is shown to have two benefits: (a) it can reuse components in regular and 

hierarchical ways, providing a systematic way to create more complex modules from 

simpler ones, and (b) the evolved representations can capture intrinsic properties of the 

design space, so that variations in the representations move through the design space more 

effectively than equivalent sized changes in a non-generative representation. Using this 

system we demonstrate for the first time the evolution and construction of modular, three-

dimensional, physically locomoting robots, comprising many more components than 

previous work on body-brain evolution.  
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Introduction 

The field of evolutionary robotics has demonstrated the ability to automatically design both the 

morphology and controller of simple physical robots through synthetic evolutionary processes (e.g. 

Sims, 1994; Nolfi and Floreano, 2000; Lipson and Pollack, 2000). Despite these results, it is not 

clear if these genetically inspired search algorithms can attain the design complexity necessary for 

practical engineering. The ultimate success of these methods as tools for design automation is 

critically dependent on the scaling properties of the representations.  Representations in which each 

element of the encoded design are used at most once in translating to the design (non-generative 

representations) scale linearly with the number of parts in the artifact.  Consequently, search 

algorithms that use this style of representation will quickly become exponentially intractable, and 

thus will not scale to complex tasks. 

In this paper we seek ways to circumvent this fundamental restriction with the automated design of 

robots by using a generative representation for encoding each robot. A robot is defined by a 

compact programmatic form (its generative representation) and the evolutionary variation takes 

place on this form. Evaluation requires the representation to be compiled into a detailed 

construction plan for manufacturing the robot in simulation or reality Thus, the generative 

representations are varied through the evolutionary search process, while the evaluation or fitness 

function is applied to the construction plans.  

Compared to previous work in evolutionary robotics, generative representations demonstrate two 

advantages. First, a generative representation allows for the reuse of components in regular and 

hierarchical ways, providing a systematic way to create more complex modules out of simpler ones. 

We show this through our evolved designs. Second, the evolved generative representation may 

itself capture intrinsic properties of the design problem, so that variations in the representations 

move through the design space very effectively. We demonstrate this by showing that across many 

generations of machines, mutations on the generative representation, despite causing larger-scale 

changes, are more productive than mutations on a non-generative representation. Both of these 

aspects maintain the evolvability of the design while its complexity rises. 

In this paper we bring together ideas of automated design and generative representations, and apply 

them to the design of physical working robots for a limited physical domain. Although the robots 
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we have built from this process are still very simple compared to human-engineered machines, their 

structure is more principled (regular, modular and hierarchical) compared to previously evolved 

machines of comparable functionality, and the virtual designs which are achieved by the system 

have an order of magnitude more moving parts. Moreover, we quantitatively demonstrate for this 

design space how the generative representation is capable of searching more efficiently than a non-

generative representation. 

Structure of this paper 

We will begin with a brief background of evolutionary robotics and related work, and demonstrate 

the scaling problem with our own prior results. Next we propose the use of an evolved generative 

representation as opposed to a non-generative representation. We describe this representation in 

detail as well as the evolutionary process that uses it. We then compare progress of evolved robots 

with and without the use of the grammar, and quantify the obtained advantage. Working two-

dimensional and three-dimensional physical robots produced by the system are shown. 

Background 

Biological evolution is characterized as a process applied to a population of individuals, which are 

subject to selective replication with variation (Maynard-Smith and Szathmary, 1995). Evolutionary 

design systems use the same principles of biological evolution to achieve machine design, yet add a 

target to the evolution – the functional requirements specified by the designer. Candidate designs in 

a population are thus still selected, replicated and varied, but selection is governed by an external 

design criteria. After a number of generations the selective evolutionary process may breed an 

acceptable design. 

Genetic algorithms – a subset of evolutionary computation involving mutation and crossover in a 

population of fixed length bit strings (Holland, 1975) – have been applied for several decades in 

many engineering problems as an optimization technique for a fixed set of parameters. 

Alternatively, more recent open-ended evolutionary design systems, in which the process is 

allowed to add more and more building blocks and parameters, seem particularly adequate to 

design problems requiring synthesis. Such open-ended evolutionary design systems have been 

demonstrated for a variety of simple design problems, including structures, mechanisms, software, 

optics, robotics, control, and many others (for overviews see, for example, Koza, 1992; Bentley, 
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1999; Husbands et al, 1998). Yet these accomplishments remain simple compared to what teams of 

human engineers can design and what nature has produced. The evolutionary design approach is 

often criticized as scaling badly when challenged with design requirements of higher complexity. 

(Mataric and Cliff, 1996)  

While there are still many poorly understood factors that determine the success of evolutionary 

design – such as starting conditions, variation operators, primitive building blocks and fidelity of 

simulation – one problem is that the design space is exponentially large, because there is an 

exponentially increasing number of ways a linearly increasing set of components can be assembled. 

Consequently, evolutionary approaches that operate on non-generative representations quickly 

become intractable. 

Indeed, while our own experiments in open-ended evolutionary design of mechanisms and 

controllers for locomotion (Lipson and Pollack, 2000) have produced physically viable 

mechanisms, the design progress appears to eventually reach a plateau. Figures 1a and Figure 1b 

show the progress of a typical run. The abscissa represents evolutionary time (generations), the 

ordinate measures fitness (net movement on a horizontal plane) and each point in the scatter plot 

represents one candidate robot. In general, after an initial period of drift, with zero fitness, we 

observe rapid growth followed by a logarithmic slowdown in progress3, characterized by longer 

and longer durations4 between successive step-improvements in the fitness. We thus hypothesize 

that one of the primary challenges in evolutionary robotics research is that of allowing the process 

to identify and reuse assemblies of parts, creating more complex components from simpler ones. 

This reuse would, in turn, lead to acceleration in the discovery process, leading in turn to higher 

level of search, and so forth. This scaling in knowledge and unit of construction – hierarchical 

modularity – is observable in the engineering (.e. Ulrich and Tung, 1991; Huang and Kusiak, 

1998), economic organization (Langlois, 2001) and in nature (e.g. Hartwell et al, 1999). 

Theoretical analysis reveals that allowing an evolutionary process to repeatedly aggregate low-level 

                                                

3 However, note that because of the stochastic nature of the process, it is hard to determine definitely whether 

progress has actually halted, and improvements may still occur after long periods of apparent stagnation (Figures 1c 

and 1d). 
4 This real time lingering is amplified by the fact that evaluation time or duration of a generation (in simulation or 

in physical reality) also increases as solutions become more complex 
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building blocks into higher-level groups in a hierarchical fashion, potentially transforms the design 

problem from exponential complexity to polynomial complexity under certain conditions (Watson 

and Pollack, 2001). The challenge then becomes the continuous identification of discovered 

components and the encapsulation of them as basic units of change in the variation operators. In 

other words, the design space in which the machines are specified and the effects of mutations and 

crossovers which move through the space need to evolve over time as well. 

Generative representations 

Generative representations (Hornby and Pollack 2001) are a class of representations in which 

elements in the encoded data structure of a design can be reused in creating the design.  

Implemented as a kind of a computer program, a generative representation can allow the definition 

of reusable sub-procedures that can be activated in loops and recursive calls, allowing the design 

system to scale to more complex tasks, in fewer steps, than can be achieved with a non-generative 

representation.  Examples of representations that are generative are genetic programming with 

automatically defined functions (Koza, 92) and cellular encoding (Gruau, 94), which has 

procedures and loops. 

Here we use Lindenmayer systems (L-systems) as the generative representation for robot designs. 

L-systems are a grammatical rewriting system introduced to model the biological development of 

multicellular organisms (Lindenmayer, 1968). Rules are applied in parallel to all characters in the 

string, just as cell divisions happen in parallel in multicellular organisms. Complex objects are 

created by successively replacing parts of a simple object by using the set of rewriting rules. A 

detailed specification of the L-system used in this work follows in the next section. 

L-systems and evolutionary algorithms have been used both on their own and together to create 

designs. L-systems have been used mainly to construct tree-like plants, (Prusinkiewicz and 

Lindenmayer, 1990). However, it is difficult to manually design an L-system to produce a desired 

form. L-systems have been combined with evolutionary algorithms in previous work, such as the 

evolution of plant-like structures (Prusinkiewicz and Lindenmayer, 1990; Jacob, 1994; Ochoa, 

1998) and architectural floor designs (Coates, 1999), but only limited results have been achieved, 

and none have resulted in dynamic physical machines comprising any form of control. 
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Robot morphology and controllers have been automatically designed both separately and 

concurrently. Genetic algorithms have been used to evolve a variety of different control 

architectures for a fixed morphology, such as: stimulus-response rules (Ngo and Marks, 1993); 

neural controllers (Grzeszczuk 1995); and gait parameters (Hornby et al, 1999).  Again using 

genetic algorithms, serial manipulators have been evolved by evaluating the ability of their end 

manipulator to achieve a set of configurations (Kim and Khosla, 1993; Chen and Burdick, 1995; 

Paredis, 1996; and Chocron and Bidaud, 1997); and tree-structured robots have been evolved that 

met a set of requirements on static stability, power consumption and geometry (Farritor et al, 1996; 

Farritor and Dubowsky, 2001).  Leger’s Darwin2K (1999) uses fixed control algorithms to evaluate 

evolved robot morphologies. Unlike the previous systems, which did not allow for reuse or the 

hierarchical construction of modules, Darwin2K has a kind of abstraction that allows the same 

assembly of parts to be reused. But the ability to design controllers is necessary for evaluating 

robots for more complex tasks or in dynamic environments (Roston, 1994; Pollack et al, 2000). 

Concurrent development of robot morphology and controllers has been achieved previously by 

Sims (1994), Komosinski and Rotaru-Varga (2000) and ourselves (Lipson and Pollack, 2000), all 

of which used evolutionary algorithms to simultaneously create the morphology and a neural 

controller in simulation. Whereas Sims and Komosinski et al were not concerned with the 

feasibility of their creations in reality, the focus of our own line of work is to show that robots 

created through evolution in simulation could be successfully transferred to reality. This work 

extends our initial results by investigating generative representations as a mechanism to overcome 

the complexity barrier. 

Method 

We used four levels of computation, as follows: 

1. An evolutionary process that evolves generative representations of robots. 

2. Each generative representation is an L-System program that, when compiled, produces a 

sequence of build commands, called an assembly procedure. 

3. A constructor executes an assembly procedure to generate a robot (both morphology and 

control). 
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4. A physical simulator tests a specific robots’ performance according to a fitness criteria, to 

yield a figure of merit that is fed back into the evolutionary process (1). 

We will describe each of the above four levels. 

Constructor and design language 

The design constructor builds a model from a sequence of build commands. The language of build 

commands is based upon instructions to a LOGO-style turtle, which direct it to move forward, 

backward or rotate about a coordinate axis. The commands are listed in Table I. Robots (called 

“Genobots”, for generatively encoded robots) are constructed from rods and joints,  

Figure 2, that are placed along the turtle’s path. Actuated joints are created by commands that direct 

the turtle to move forward and place an actuated joint at its new location, with oscillatory motion 

and a given offset. 

The operators “[“ and “]” push and pop the current state – consisting of the current rod, current 

orientation, and current joint oscillation offset – to and from a stack. Forward moves the turtle 

forward in the current direction, creating a rod if none exists or traversing to the end of the existing 

rod. Backward goes back up the parent of the current rod. The rotation commands turn the turtle 

about the Z-axis in steps of 60°, for 2D robots, and about the X, Y or Z axes, in steps of 90°, for 3D 

robot.  Joint commands move the turtle forward, creating a rod, and end with an actuated joint.  The 

parameter to these commands specify the speed at which the joint oscillates, using integer values 

from 0 to 5, and the relative phase-offset of the oscillation cycle is taken from the turtle’s state.  

The commands “Increase-offset” and “decrease-offset” change the offset value n the turtle's state 

by ±25% of a total cycle. Command sequences enclosed by “{ }” are repeated a number of times 

specified by the brackets' argument. 

For example, the string,  

{ joint(1) [ joint(1) forward(1) ] clockwise(2)}(3) 

is interpreted as: 

{joint(1) [ joint(1) forward(1) ] clockwise(2) 

joint(1) [ joint(1) forward(1) ] clockwise(2) 
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joint(1) [ joint(1) forward(1) ] clockwise(2)} 

and produces the robot in  
. 

Constructed robots do not have a central controller; rather each joint oscillates independent of the 

others. More recent work has integrated a recurrent neural network as the robot controller (Hornby 

and Pollack, in press). In the figures, large crosses (×’s) are used to show the location of actuated 

joints and small crosses show unactuated joints. The left image shows the robot with all actuated 

joints in their starting orientation and the image on the right shows the same robot with all actuated 

joints at the other extreme of their actuation cycle. In this example all actuated joints are moving in 

phase. 

Parametric OL-Systems 

The class of L-systems used as the representation is a parametric, context-free L-system (P0L-

system). Formally, a P0L-system is defined as an ordered quadruplet, G = (V, Σ, ω, P) where, 

V is the alphabet of the system,  

Σ is the set of formal parameters, 

ω ∈ (V × ℜ*)+ is a nonempty parametric word called the axiom, and  

P ⊂ (V × Σ*) × C(Σ) × (V × ξ(Σ))* is a finite set of productions. 

The symbols “:” and “à” are used to separate the three components of a production: the 

predecessor, the condition and the successor. For example, a production with predecessor A(n0,n1), 

condition n1>5 and successor B(n1+1)cD(n1+0.5, n0-2) is written as:  

A(n0, n1): n1 > 5 à B(n1+1)cD(n1+0.5, n0-2) 

A production matches a module in a parametric word if and only if  the letter in the module and the 

letter in the production predecessor are the same, the number of actual parameters in the module is 

equal to the number of formal parameters in the production predecessor, and the condition 

evaluates to true if the actual parameter values are substituted for the formal parameters in the 

production. 
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For ease of implementation we add constraints to our P0L-system. The condition is restricted to be 

comparisons as to whether a production parameter is greater than a constant value. Parameters to 

design commands are either a constant value or a production parameter. 

Parameters to productions are equations of the form: 

 [production parameter | constant ] [+ | – | × | \ ] [production parameter | constant ] 

The following is a P0L-system using the language defined in Table I and consists of two 

productions with each production containing two condition-successor pairs: 

P0(n):  n > 2 à {P0(n – 1) }(n) 

n > 0 à joint(1)  P1(n × 2)  clockwise(2) 

P1(n):  n > 2 à [ P1(n / 4) ] 

n > 0 à joint(1)  forward(1) 

 

If the P0L-system is started with P0(3), the resulting sequence of strings is produced: 

P0(3) 

{ P0(2) }(3)  

{ joint(1) P1(4) clockwise(2) }(3)  

{ joint(1) [ P1(1) ] clockwise(2) }(3)  

{ joint(1) [ joint(1) forward(1) ] clockwise(2) }(3)  

This produces the robot in  
. 

The evolutionary process 

An evolutionary algorithm is used to evolve individual L-systems. Evolutionary algorithms are a 

stochastic search and optimization technique inspired by natural evolution (Holland, 1975; Back et 

al, 1991). An evolutionary algorithm maintains a population of candidate solutions from which it 

performs search by iteratively replacing poor members of the population with individuals generated 

by applying variation to good members of the population. The initial population of L-systems is 
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created by making random production rules. Evolution then proceeds by iteratively selecting a 

collection of individuals with high fitness for parents and using them to create a new population of 

individual L-systems through mutation and recombination.  Since the initialization process and the 

variation operators are customized for our representation we discuss them in greater detail. 

Mutation creates a new individual by copying the parent individual and making a small change to 

it. Changes that can occur are: replacing one command with another; perturbing the parameter to a 

command by adding/subtracting a small value to it; changing the parameter equation to a 

production; adding/deleting a sequence of commands in a successor; or changing the condition 

equation. 

Recombination takes two individuals, p1 and p2, as parents and creates one child individual, c, by 

making it a copy of p1 and then inserting a small part of p2 into it. This is done by replacing one 

successor of c with a successor of p2, inserting a sub-sequence of commands from a successor in p2 

into c, or replacing a sub-sequence of commands in a successor of c within a sub-sequence of 

commands from a successor in p2. Details of the mutation and recombination operators used here, 

as well as other evolutionary algorithm parameters, are described in an earlier report (Hornby and 

Pollack 2000). 

Since we were trying to evolve machines that could locomote, fitness was defined as the distance 

moved by the robot's center of mass after 10 simulated oscillation cycles. This distance is 

normalized by one tenth of the length of a basic bar, to produce a dimensionless figure. 

The evolutionary algorithm described in the methods section of this paper is essentially a canonical 

evolutionary algorithm, differing only in the representation. First, a population size of one hundred 

individuals is used and this is run for five hundred generations. Once individuals are evaluated, 

their fitness score is adjusted to a probability of reproducing using exponential scaling with a 

scaling factor of 0.03 (Michalewicz, 92). Individuals are then selected as parents using stochastic 

remainder selection (Back, 96). New individuals are created through applying mutation or 

recombination (chosen with equal probability) to individuals selected as parents. The two best 

individuals from each generation were copied directly to the next generation without mutation or 

crossover (elitism of 2). Since the initialization process, mutation operator and recombination 

operator are all tightly coupled to the representation we describe each of these parts in greater 

detail. 
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Initializing the population consists of creating a set of random L-systems.  A random L-system has 

a fixed number of production rules, with each having the same number of condition successor pairs, 

so creating a new individual consists of creating a number of random conditions and successors.  A 

new condition is created by selecting a random parameter and a random value to compare against.  

New successors are created by stringing together sequences of one to three construction symbols, 

with each sequence being enclosed with push/pop brackets, block replication parenthesis, or 

neither.  Examples of these blocks of commands are: 

 Forward(n0) left(4.0) 

 { up(1.0) }(2.0) 

 [ back(2.0) down(1.0) joint(n1) ] 

After a new L-system is created it is evaluated.  Individuals that score below a minimum fitness 

value are deleted and a new one is randomly created.  In this way all robots in the initial population 

have a minimum degree of viability. 

The mutation operator creates a new robot encoding by copying an existing robot encoding and 

making a random change to it.  This is implemented by selecting one of the production rules at 

random and changing its condition or successor.  For example, if the condition P4 is selected to be 

mutated, 

  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) ] 

(n0 > 2.0)  { left(1.0) forward(2.0) }(n0) 

then some of the possible mutations are, 

Mutate an argument to a construction command: 

   P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/2.0) ] 

(n0 > 2.0)  { left(1.0) forward(2.0) }(n0) 

Delete random command(s): 

  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) ] 

(n0 > 2.0)  { forward(2.0) }(n0) 

Insert a random block of command(s): 
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  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) { up(1.0) back(2.0) }(2.0) ] 

(n0 > 2.0)  { left(1.0) forward(2.0) }(n0) 

The other method of creating new design encodings is recombination, which takes two individuals 

as parents and creates a new child individual by copying the first parent and inserting a small parent 

of the second parent into it.  This insertion can replace an entire condition-successor pair, just the 

successor, or a subsequence of commands in the successor.  For example if P4 is selected to be 

changed and in the first parent it is, 

  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) ] 

(n0 > 2.0)  { left(1.0) forward(2.0) }(n0) 

and in the second parent it is, 

  P4(n0,n1) :-  (n0 > 4.0)   forward(1.0) joint(2.0) 

(n0 > 3.0)  P2(n1-1.0,n1-2.0) [ up(2.0) joint(3.0) ] 

Then some of the possible results of recombination are: 

Replace an entire condition-successor pair: 

  P4(n0,n1) :-  (n0 > 3.0)  P2(n1-1.0,n1-2.0) [ up(2.0) joint(3.0) ] 

(n0 > 2.0)  { left(1.0) forward(2.0) }(n0) 

Replace just a successor: 

  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) ] 

(n0 > 2.0)  forward(1.0) joint(2.0) 

Replace one sequence of commands with another: 

  P4(n0,n1) :-  (n1 > 6.0)   [ P1(n0-1.0,n1/3.0) ] 

(n0 > 2.0)  { left(1.0) [ up(2.0) joint(3.0) ] }(n0) 

Simulator 

To evaluate a robot design it is simulated in a quasi-static simulator. The simulation consists of 

moving the actuated joints in small angular increments of up to 0.001 radians (depending on joint 

speed). After each update, the robot is settled by calculating the location of its center of mass and 
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then repeatedly rotating the robot about the edge of its footprint nearest to the center of mass until it 

is stable. In performing this simulation, masses of the different connectors are taken into account 

for calculating the center of mass, but not in calculating inertia.  Torques are not calculated, and 

power considerations are undefined in quasi-static motion. 

To create robot designs that are robust to imperfections in real-world construction, error is added to 

the simulation similar to the method of Jakobi (1998) and Hornby et. al. (2000). This consists of 

simulating a robot design three times, once without error and twice with different error values 

applied to joint angles. Error consists of adding a random rotation (in the range of +/-0.1 radians 

about each of the three coordinate axis) to every joint that is not part of a cycle. A robot's fitness is 

the minimum score from these three trials. 

The assumptions made in these simulations are geared towards making a simulator that is robust 

and fast, and sufficiently realistic so that results produced will transfer well into reality. Quasi-static 

simulation also eliminates the need to accurately model masses, inertias, torques and power, and 

avoids real-time control issues entirely when transferring to reality. This assumption of low 

momentum was indeed justified in light of our results, however inevitably more realistic and 

complex tasks will require more realistic and higher fidelity simulation. 

Results 

We now describe how our system has been used to create modular designs that locomote in 

simulation and were shown to work in reality. To show that a generative representation has better 

scaling properties and captures intrinsic properties of the problem we ran a number of experiments 

with both a non-generative representation and a generative representation. The non-generative 

representation consisted of a string of up to 10000 build commands. The generative representation 

used a P0L-system with up to 15 productions, each with two parameters and three sets of condition-

successor pairs. The maximum number of commands in each condition-successor pair is 15 and 

maximum length of a command string generated by the L-system is 10000 build commands. In 

these runs fitness is defined as the distance moved by the robot's center of mass after 10 simulated 
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oscillation cycles, with the constraint that robots could not have a sequence of more than 4 bars in a 

row that was not part of a structural loop, as a structural constraint5. 

Evolutionary runs were similar in many ways. The first individuals started with a few rods and 

joints and would slowly slide on the ground. Robots produced from runs using the non-generative 

representation would improve upon their sliding motion over the course of the evolutionary run. 

Approximately half the runs produce “interesting” viable results. Nine selected machines out of 20 

runs are shown in  

Figure 4. The two main forms of locomotion found used one or more oscillating appendages to 

push along, or had two main body parts connected by a sequence of rods that twisted in such a way 

that first one half of the robot would rotate forward, then the other. The two fastest robots evolved 

with the non-generative representation, shown in  

Figure 4, are #3 (fitness 1188 with 49 rods and moves by twisting) and #7 (fitness 1000 with 31 

rods which moves by pushing). Half the robots had only a handful of rods, such as robot #6. Robot 

#4 is an example of one that uses its appendages to roll over. 

Robots evolved with the generative representation not only had higher average fitness, but tended 

to move in a more continuous manner. Here the two fastest were #1 (a sequence of interlocking X's 

that rolls along with fitness 2754 and 268 rods) and #5 (whose segments are shaped like a coil and 

it moves by rolling sideways with fitness of 3604 and 325 rods). Not all were regular as 

demonstrated by robot #2, an asymmetric robot that moves by sliding along similar to many of the 

robots generated with a non-generative representation (fitness 766 and .63 rods) Robot #11 is a 

four-legged walker with fitness 2170 and 109 rods. An example of the movement cycle of a robot 

produced with the generative representation is shown in  

, sequence a-d.  This robot has fitness 686 and 80 rods and moves by passing a loop from back to 

front. 

                                                

5 In a true dynamics simulator actual torques on joints would be calculated and then a constraint on the allowable 

torque could be used instead. 
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In general, robots evolved using the generative representation increased their speed by repeating 

rolling segments to smoothen out their gaits, and increasing the size of these segments/appendages 

to increase the distance moved in each oscillation. 

Finally, we construct some of the evolved Genobots6. We picked three robots that were small (in 

number of parts and motors) and easy to build. The “M” robot in Figure 6 shows two parts of the 

locomotion cycle of the two-dimensional robot.  With its two outer arms evolved to be 25% out of 

phase, it moves by bringing them together to lift its middle arm and then to shift its center of mass 

to the right. One modification to the constructed robot is the addition of sandpaper on the feet of the 

two outer arms to compensate for the friction modeled by our simulator and that of the actual 

surface used. 

The “Kayak” robot (so called because of its form of locomotion, see video) in Figure 7 moves by 

curling up in alternating directions. At the extreme stages of these oscillations, the robot contacts 

the ground at only three points, freeing its fourth point to move forward. Repeated oscillations 

gradually push the machine forward while its rear support is dragged across the ground. 

The “Quatrobot” robot in Figure 8 has one actuated joint on each of its four legs and walks by 

raising and lowering its legs.  Each leg 12.5% out of phase with the ones next to it and the robot 

moves in the direction of the lead leg.  Instead of constructing this robot out of the components in 

Figure 2, it was manufactured using rapid prototyping equipment in a manner similar to our 

original robots (Lipson and Pollack, 2000).  

Scaling 

The results shown so far demonstrate that the generative system is capable of producing non-trivial 

robot designs that transfer well into reality. We now address the question of scaling – the progress 

of performance of the design process over evolutionary time. This aspect determines whether 

evolutionary robotics might ultimately be used as a practical engineering tool. 

                                                

6 The “M” and “Kayak” robots were evolved in runs that did not use the structural constraint limiting the 

maximum number of rods without a structural loop. 
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Figure 9 examines the progress of average population fitness over the generations, averaged over 

10 evolutionary runs. Each run used a population of 100 individuals and was evolved for 500 

generations. The lower curve corresponds to the non-generative representation, while the upper 

curve shows progress for generative representation over the same substrate. It is evident that the 

generative representation makes faster progress at the initial stage: Fitness increase per generation 

is more than 6 times faster in the first 100 generations, as shown by the linear dashed lines. In that 

short period, the generative system consistently outperforms the non-generative representation, 

which does not reach an equivalent level within the entire experiment7. After around 200 

generations, progress rate with the generative representation is slowed down, yet still is 

approximately twice the rate of the non-generative representation.  

Figure 10 and Figure 11 show some properties of the design space covered by the search process. 

The plots show designs visited in terms of their fitness and complexity: Figure 10 approximates 

complexity in terms of the physical parts count, and Figure 11 approximates complexity in terms of 

length of the generating program (either the construction sequence or generative program), in 

number of language elements. There seems to be a correlation between the fitness and size of the 

robot (in physical parts); however this might be a particular of the locomotion problem. The two 

sets of plots show, on one hand, that the non-generative representation searches the space more 

thoroughly, as it finds better solutions with low complexity. Yet it does not reach far enough into 

the space to explore more complex designs. Because fitness is correlated with complexity (or size) 

for this problem, this shortcoming prevents it from finding solutions with high fitness. Although 

strict or even near global optimality does not seem to be consistently attainable for this 200-600 

dimension search space, the generative system is able to explore much fitter solutions through 

much shorter programs, as show in Figure 10. 

One of the fundamental questions is whether the actual grammar evolved in the successful L-

systems has captured some of the intrinsic properties of the design space. One way to quantify this 

is to measure the correlation between fitness change and a random mutation of various sizes, and 

compare this with the correlation observed in random mutations on the non-generative 

representation as a control experiment. If the observed correlation is distinguishable and better for 

                                                

7 Each experiment comprises 10 runs, with run evolving a population of 100 robots over 500 generations.   In all 

500,000 robot simulations were run in a period of approximately a 6 months of computation time. 



 18

the generative system than it is for the blind system, then the generative system must have captured 

some useful properties.  

The graph in Figure 12 is a comparison of the fitness-mutation correlation between a generative 

representation and a random control experiment on the same substrate and on the same set of 

randomly selected individuals. For this analysis, 80,000 individuals were selected uniformly from 

16 runs and over 100 generations using a generative representation. Each point represents a 

particular fitness change (positive or negative) associated with a particular mutation size. The 

points on the left plot (Figure 12a) were carried out on the non-generative representation generated 

by the generative representation and serve as the control set. For these points, 1 to 6 mutations were 

applied so as to approximate mutations of similar phenotypic-size as those on the generative 

representation. Each mutation could modify or swap a sequence of characters. The points on the 

right (Figure 12b) were also carried out randomly but on the generative representations of the same 

randomly selected individuals. Only a single mutation was applied to the generative representation, 

and consisted of modifying or swapping a single keyword or parameter. Mutation size was 

measured in both cases as the number of modified commands in the final construction sequences. 

The two distributions in Figure 12 have distinct features. The data points separate into two 

distinguishable clusters, with some overlap. Mutations generated on the generative representations 

clearly correlate with both positive fitness and negative fitness changes, whereas most mutations on 

the non-generative representation result in fitness decrease. Statistics of both systems, averaged 

over 8 runs each, are summarized in Table III below. A one-way ANOVA test revealed that the two 

means are different with at least 95% confidence. Cross-correlation showed that in 40% of the 

instances where a non-generative mutation was successful, a generative mutation was also 

successful, whereas in only 20% of the instances where a generative mutation was successful, was 

a non-generative mutation successful too. In both cases smaller mutations are significantly more 

successful than larger mutations. However large mutations (>100) were an order of magnitude 

more often successful in the generative case than in the non-generative case. All these measures 

indicate that the generative representation is more efficient in exploiting useful search paths in the 

design space. 
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An example of how the generative representation is being used to make coordinated changes can be 

seen by individuals taken from different generations of one of the evolutionary runs.  The sequence 

of images in Figure 13, which are the best individual in the population taken from different 

generations, show two changes occurring.  First, the rectangle that forms the body of the robot goes 

from being two-by-two, to three-by-three, to two-by-three.  This change is possible with a single 

change of the generative representation but requires multiple coordinated changes on the non-

generative representation.  The second change is the evolution of the robot’s legs.  Even though the 

legs are changing from image to image, all four legs are the same in each of the six images.  As 

with the body, changing all four legs simultaneously can be done easily with the generative 

representation by changing the one module that is used for constructing them, but would require 

simultaneously making the same change to all four occurrences of the leg assembly procedure in a 

non-generative representation. 

Conclusions 

The purpose of the work reported in this paper is twofold. First, to demonstrate the ability of an 

evolutionary process to design both the morphology and control of a physically viable three-

dimensional robot that, while it has the same basic locomotion functionality as previously evolved 

machines, demonstrates a much better form of design. In this work the evolved designs are an order 

of magnitude more complex, in terms of the number of given basic building blocks, than previous 

work. Both the evolved designs, as well as the physically realized machines, show a significantly 

higher degree of modularity, regularity and hierarchy than previous machines whose morphology 

and control were generated fully automatically. 

The second goal of this work is to investigate the scaling properties of generative systems when 

applied to a robotic design problem. We have shown that the use of a generative representation has 

significantly accelerated the rate of progress at early stages of the design search, reaching levels 

that are not reached through direct mutation on the same design space and through the same 

number of evaluations. Most importantly, we have shown that at least for this design space, a 

generative representation is significantly more efficient in exploiting useful search paths in the 

design space than a non-generative representation. 
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While the physically realized results shown here do not compare to design capabilities of teams of 

human engineers, we point out that the field is still very young. Naturally, more complex machines 

that can accomplish more complex tasks can be attained merely by starting with more advanced 

building blocks and more sophisticated genetic operators; but the eventual inventiveness of a 

design system is not measured by its final outcome, but rather by the distance of its outcome from 

its starting point. We believe that careful inclusions of fundamental design principles such as 

modularity, regularity, and hierarchy into self-organizing stochastic design processes like evolution 

can ultimately lead to powerful design automation tools for robots which can prosper in the real 

world. 
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Appendix 

Generative representation for robot “M” 

Generative Representation Construction Sequence 
This generative representation is started with P0(3.0,3.0) and run for ten 

iterations.  (T) indicates that the condition always succeeds. 
 
P0: 
   (n0>3.0) :- clockwise(1.0) cntr-clockwise(n1) [clockwise(1.0) clockwise(1.0) 

back(5.0) ] 
   (n0>3.0) :- clockwise(1.0) cntr-clockwise(n1) [clockwise(1.0) clockwise(1.0) 

back(5.0) ] 
   (T)    :- [cntr-clockwise(1.0) P7(n0+1.0,n1-n0) ] 
 
P1: 
   (n0>3.0) :- [clockwise(1.0) ] 
   (n0>3.0) :- [clockwise(1.0) ] 
   (T)    :- P0(n1,n0-1.0) clockwise(1.0) {forward(1.0) }(2.0) 
 
P3: 
   (n1>5.0) :- clockwise(1.0) decrease-offset(1.0) P8(5.0,n0/5.0) decrease-

offset(1.0) 
   (n1>1.0) :- clockwise(1.0) cntr-clockwise(n1) [clockwise(1.0) clockwise(1.0) 

back(5.0) ] 
   (T)    :- clockwise(1.0) cntr-clockwise(n1) clockwise(1.0) clockwise(1.0) 

back(5.0) 
 
P5: 
   (n1>3.0) :- {joint(5.0) }(3.0) P6(n1-2.0,n0/n1) back(1.0) 
   (n1>3.0) :- {joint(5.0) }(3.0) back(1.0) P6(n1-2.0,n0/n1) 
   (T)    :- P12(n1/3.0,5.0) back(1.0) 
 
P6: 
   (n1>3.0) :- [clockwise(1.0) clockwise(n1) ] 
   (n1>3.0) :- [clockwise(1.0) clockwise(n1) ] 
   (T)    :- forward(2.0) decrease-offset(1.0) cntr-clockwise(1.0) 

P13(n1+1.0,n1/n0) forward(1.0) 
 
P7: 
   (n1>1.0) :- {cntr-clockwise(1.0) decrease-offset(1.0) }(1.0) 
   (n1>1.0) :- {cntr-clockwise(1.0) decrease-offset(1.0) }(1.0) 
   (T)    :- clockwise(1.0) [cntr-clockwise(1.0) ] P9(n1+1.0,n1+1.0) P3(n1-

4.0,n1+1.0) 
 
P9: 
   (n1>1.0) :- [P11(1.0,n0+2.0) P10(n0+5.0,n0) cntr-clockwise(1.0) ] 
   (n1>1.0) :- [P11(1.0,n0+2.0) P10(n0+5.0,n0) cntr-clockwise(1.0) ] 
   (T)    :- clockwise(n0) increase-offset1.0) cntr-clockwise(5.0) P3(3.0,3.0) 

P6(n1-1.0,1.0) 
 
P13: 
   (n1>4.0) :- [P14(n0-n1,n1+2.0) cntr-clockwise(1.0) ] 
   (n1>4.0) :- [P14(n0-n1,n1+2.0) cntr-clockwise(1.0) ] 

(T) :- [P5(n0,n1+4.0) ] [P1(n1+n0,5.0) cntr-clockwise(3.0) ] 
  

  
[ cntr-clockwise(1) clockwise(1) [ cntr-
clockwise(1) ] clockwise(1) offset-increase(1) 
cntr-clockwise(5) clockwise(1) cntr-clockwise(3) 
[ clockwise(1) clockwise(1) back(5) ] forward(2) 
offset-decrease(1) cntr-clockwise(1) [ joint(5) 
joint(5) joint(5) forward(2) offset-decrease(1) 
cntr-clockwise(1) [ joint(5) joint(5) joint(5) 
forward(2) offset-decrease(1) cntr-clockwise(1) 
forward(1) back(1) ] [ clockwise(1) cntr-
clockwise(0) [ clockwise(1) clockwise(1) 
back(5) ] clockwise(1) forward(1) forward(1) 
cntr-clockwise(3) ] forward(1) back(1) ] [ 
clockwise(1) cntr-clockwise(2) [ clockwise(1) 
clockwise(1) back(5) ] clockwise(1) forward(1) 
forward(1) cntr-clockwise(3) ] forward(1) 
clockwise(1) cntr-clockwise(1) clockwise(1) 
clockwise(1) back(5) ] 
 
See Table I for meaning of commands. 
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Generative representation for robot “Kayak” 

Generative Representation Construction Sequence 
This generative representation is started with P0(2.0, 6.0) and 
is run for fourteen iterations. 
 
P0: 
   (n1>6.0) :- offset-increase(n1) P3(5.0,n1-5.0) [down(1.0) 

P7(n0,n0-1.0) ]  
   (n0>6.0) :- offset-increase(3.0) P3(5.0,n1-5.0) [cntr-

clockwise(n0) P12(n0,n0-1.0) cntr-clockwise(n0) 
P12(n0,n0-1.0) ]  

   (n1>0.0) :- offset-increase(3.0) P3(5.0,n1-5.0) [down(1.0) 
cntr-clockwise(n0) down(1.0) cntr-clockwise(n0) 
P12(n0,n0-1.0) ]  

 
P1: 
   (n1>5.0) :- [back(1.0) ] P1(n1/4.0,3.0) clockwise(1.0) 
   (n0>4.0) :- {revolute2(n0) }(2.0) right(1.0) up(1.0) [up(1.0) 

down(5.0) offset-decrease(1.0) ]  
   (n1>1.0) :- {revolute2(n0) }(2.0) right(1.0) up(1.0) [up(1.0) 

down(5.0) down(1.0) ] [up(1.0) down(4.0) offset-
decrease(1.0) ]  

 
P2: 
   (n1>0.0) :- up(1.0) P12(n1/5.0,n1/n0) revolute(1.0)  
   (n1>1.0) :- up(1.0) P14(n1/5.0,n1/n0) revolute(1.0)  
   (n1>0.0) :- 
 
P3: 
   (n1>-3.0) :- left(4.0) P10(n0-3.0,n0-1.0) P2(n0/5.0,n0-5.0) 

P1(n1-1.0,1.0) left(4.0)  
   (n0>3.0) :- left(4.0) P10(n0-3.0,n0-1.0) P2(n0/5.0,n0-5.0) 

left(4.0)  
   (n1>4.0) :- offset-decrease(1.0) P2(n0/5.0,n0-5.0)  
 
P4: 
   (n1>4.0) :- P6(n0+n1,n1=5.0) cntr-clockwise(n0) up(1.0) 

P13(n1,n1/5.0) P1(4.0,5.0) right(1.0) up(n1)  
   (n0>4.0) :- cntr-clockwise(n0) P6(n0+n1,5.0) up(1.0) 

P13(n1,n1/5.0) P1(4.0,5.0) right(1.0) up(n1) up(n1)  
   (n0>0.0) :- cntr-clockwise(n0) P6(n0+n1,5.0) up(1.0) 

P13(n1,n1/5.0) P1(4.0,5.0) right(1.0) up(n0) up(n1)  
 
P5: 
   (n0>-1.0) :- right(3.0) right(3.0) P4(n0+4.0,4.0) 
   (n0>0.0) :- offset-increase(3.0) right(3.0) P4(n0+4.0,4.0)  
   (n1>0.0) :- right(3.0) right(3.0) P4(n0+4.0,4.0) 
 
P6: 
   (n0>8.0) :- [P9(2.0-3.0,n0-1.0) P10(n0+n1,n1-2.0) ]  
   (n0>-3.0) :- [P9(2.0-3.0,n0-1.0) P10(n0+n1,n1-2.0) ]  
   (n1>0.0) :- clockwise(n0) cntr-clockwise(n1)  
 
P7: 
   (n1>0.0) :- left(1.0)  
   (n0>2.0) :-  
   (n0>0.0) :- {{down(1.0) }(n0) }(4.0) 
 
P8: 
   (n0>5.0) :- cntr-clockwise(1.0) cntr-clockwise(3.0) up(1.0)  
   (n0>1.0) :- clockwise(2.0) P14(2.0,n0+1.0) cntr-

clockwise(1.0) cntr-clockwise(1.0) up(1.0)  
   (n1>0.0) :- [clockwise(2.0) P14(2.0,n0+1.0) ] 
 
P9:  
   (n1>5.0) :- up(5.0)  

 
offset-increase(3) left(4) right(1) offset-decrease(5) cntr-
clockwise(1) cntr-clockwise(1) right(3) right(3) cntr-
clockwise(5) [ up(5) right(1) offset-decrease(5) [ up(5) [ 
offset-decrease(3) forward(2) ] [ clockwise(1) ] ] cntr-
clockwise(1) cntr-clockwise(1) right(3) right(3) left(1) [ 
back(1) right(1) ] [ offset-decrease(1) clockwise(2) cntr-
clockwise(1) cntr-clockwise(1) up(1) ] left(4) offset-
decrease(5) [ up(5) [ offset-decrease(3) forward(2) ] [ 
clockwise(1) ] ] cntr-clockwise(1) cntr-clockwise(1) 
right(3) right(3) left(1) [ back(1) right(1) ] [ offset-
decrease(1) clockwise(2) cntr-clockwise(1) cntr-
clockwise(1) up(1) ] left(4) offset-decrease(5) ] up(1) [ [ 
offset-decrease(1) ] clockwise(4) offset-decrease(1) 
left(1) ] left(1) revolute2(4) revolute2(4) right(1) up(1) [ 
up(1) down(5) down(1) ] [ up(1) down(4) offset-
decrease(1) ] right(1) up(4) up(4) left(1) [ back(1) 
right(1) ] right(3) right(3) cntr-clockwise(4) [ up(5)  
right(1) offset-decrease(5) [ up(5) [ offset-decrease(3) 
forward(2) ] [ clockwise(1) ] ] cntr-clockwise(1) cntr-
clockwise(1) left(1) [ back(1) right(1) ] [ offset-
decrease(1) ] left(4) offset-decrease(5) [ up(5) [ offset-
decrease(3) forward(2) ] [ clockwise(1) ] ] cntr-
clockwise(1) cntr-clockwise(1) left(1) [ back(1) right(1) 
] [ offset-decrease(1) ] left(4) offset-decrease(5) ] up(1) 
[ [ offset-decrease(1) ] clockwise(4) offset-decrease(1) 
left(1) ] left(1) revolute2(4) revolute2(4) right(1) up(1) [ 
up(1) down(5) down(1) ] [ up(1) down(4) offset-
decrease(1) ] right(1) up(4) up(4) left(1) left(1) [ offset-
decrease(1) clockwise(2) [ clockwise(1) ] clockwise(1) 
cntr-clockwise(1) cntr-clockwise(1) up(1) ] left(1) 
offset-decrease(5) cntr-clockwise(1) cntr-clockwise(1) 
right(3) right(3) cntr-clockwise(5) [ up(5) right(1) 
offset-decrease(5) [ up(5) [ offset-decrease(3) 
forward(2) ] [ clockwise(1) ] ] cntr-clockwise(1) cntr-
clockwise(1) right(3) right(3) left(1) [ back(1) right(1) ] 
[ offset-decrease(1) clockwise(2) cntr-clockwise(1) cntr-
clockwise(1) up(1) ] left(4) offset-decrease(5) [ up(5) [ 
offset-decrease(3) forward(2) ] [ clockwise(1) ] ] cntr-
clockwise(1) cntr-clockwise(1) right(3) right(3) left(1) [ 
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   (n1>1.0) :- P5(n0-1.0,n0/5.0) P7(n1/n0,5.0/4.0) 
P7(n1/n0,n1/1.0)  

   (n0>0.0) :- P5(n0-1.0,n0/5.0)  
 
P10:  
   (n1>4.0) :- [offset-decrease(3.0) forward(2.0) ] 

[clockwise(1.0) ] 
   (n1>3.0) :- right(1.0) {offset-decrease(5.0) P11(3.0,n1+n0) 

P6(n0-5.0,n0-4.0) }(2.0)  
   (n1>0.0) :- right(1.0) {offset-decrease(5.0) P6(n0-5.0,n0-4.0) 

P11(4.0,n1+n0) }(2.0) offset-decrease(5.0) 
 
P11: 
   (n0>1.0) :- cntr-clockwise(1.0) P11(n0/4.0,n0+n1)  
   (n0>0.0) :- cntr-clockwise(1.0) P9(n1/4.0,n0-1.0) 

P12(n1/5.0,5.0)  
   (n0>0.0) :- cntr-clockwise(1.0) P12(n1/5.0,5.0)  
 
P12:  
   (n1>1.0) :- left(1.0) [back(1.0) right(1.0) ] P9(n1-4.0,3.0) 

[offset-decrease(1.0) P8(n1,n1+n0) ] left(n0)  
   (n1>-1.0) :- left(1.0) [back(1.0) down(n0) ] P9(n1-4.0,3.0) 

left(n1)  
   (n1>0.0) :- [back(1.0) down(n0) ] [P8(n0,n0-n1) ] 
 
P13:  
   (n0>4.0) :- left(1.0) P12(4.0,1.0-2.0)  
   (n0>3.0) :- [[offset-decrease(1.0) ] clockwise(4.0) offset-

decrease(1.0) left(1.0) ] left(1.0) P12(4.0,1.0-2.0)  
   (n1>0.0) :- left(1.0) clockwise(4.0) 
 
P14:  
   (n0>5.0) :- 
   (n0>5.0) :- clockwise(1.0) P5(n1+n0,n1/5.0) 
   (n0>0.0) :- [clockwise(1.0) ] clockwise(1.0) 

clockwise(1) cntr-clockwise(1) right(3) right(3) left(1) [ 
back(1) right(1) ] [ offset-decrease(1) clockwise(2) cntr-
clockwise(1) cntr-clockwise(1) up(1) ] left(4) offset-
decrease(5) ] up(1) [ [ offset-decrease(1) ] clockwise(4) 
offset-decrease(1) left(1) ] left(1) revolute2(4) 
revolute2(4) right(1) up(1) [ up(1) down(5) down(1) ] [ 
up(1) down(4) offset-decrease(1) ] right(1) up(4) up(4) 
left(1) [ back(1) right(1) ] right(3) right(3) cntr-
clockwise(4) [ up(5) right(1) offset-decrease(5) [ up(5) [ 
offset-decrease(3) forward(2) ] [ clockwise(1) ] ] cntr-
clockwise(1) cntr-clockwise(1) left(1) [ back(1) right(1) 
] [ offset-decrease(1) ] left(4) offset-decrease(5) [ up(5) 
[ offset-decrease(3) forward(2) ] [ clockwise(1) ] ] cntr-
clockwise(1) cntr-clockwise(1) left(1) [ back(1) right(1) 
] [ offset-decrease(1) ] left(4) offset-decrease(5) ] up(1) 
[ [ offset-decrease(1) ] clockwise(4) offset-decrease(1) 
left(1) ] left(1) revolute2(4) revolute2(4) right(1) up(1) [ 
up(1) down(5) down(1) ] [ up(1) down(4) offset-
decrease(1) ] right(1) up(4) up(4) left(1) left(1) [ offset-
decrease(1) clockwise(2) [ clockwise(1) ] clockwise(1) 
cntr-clockwise(1) cntr-clockwise(1) up(1) ] left(1) 
left(4) [ down(1) cntr-clockwise(2) down(1) cntr-
clockwise(2) left(1) [ back(1) down(2) ] left(1) left(1) 
left(1) ] 
 
See Table II for meaning of commands. 
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Generative representation for robot “Quatrobot” 

Generative Representation Construction Sequence 
 
This generative representation is started with P0(5.0,4.0) and run 

thirten iterations.  (T) indicates that the condition always 
succeeds.  The assembly procedure is not included because 
it consists of almost 900 commands. 

 
P0: 
   (n1>1.0) :- [P12(n0-0.0,n1-0.0) ] [P3(4.0,n1/1.0) forward(1.0) 

P0(n1/2.0,5.0) decrease-offset(n0) ] 
   (n1>0.0) :- [decrease-offset(1.0) cntr-clockwise(1.0) left(1.0) 

forward(1.0) ] increase-offset(1.0) 
 
P1: 
   (n1>1.0) :- increase-offset(1.0) P8(n1,n0+5.0) [P7(n1-

n0,n1+n0) right(5.0) P10(n1/n0,n0-4.0) increase-offset(1.0) ] 
left(1.0) forward(1.0) clockwise(1.0) 

   (n0>0.0) :- decrease-offset(1.0) 
 
P3: 
   (n1>2.0) :- [forward(1.0) revolute(n1) down(1.0) forward(1.0) 

P6(n0+2.0,3.0) increase-offset(1.0) forward(1.0) ] 
forward(1.0) right(1.0) increase-offset(1.0) 

   (n1>0.0) :- [forward(1.0) revolute(n1) forward(1.0) down(1.0) 
P6(n0+2.0,3.0) increase-offset(1.0) forward(1.0) ] 
forward(1.0) right(1.0) increase-offset(1.0) 

 
P4: 
   (n1>6.0) :- [forward(n0) down(1.0) ] forward(n0) [down(1.0) ] 

[left(1.0) forward(1.0) ] [P7(n1-n0,n1/5.0) cntr-clockwise(3.0) 
] revolute(1.0) back(5.0) P1(2.0,n1/2.0) 

   (n0>0.0) :- [forward(n0) down(1.0) ] [forward(n0) down(1.0) ] 
[left(1.0) forward(1.0) ] [P7(n1-n0,n1/5.0) cntr-clockwise(3.0) 
] revolute(1.0) back(5.0) P1(2.0,n1/2.0) 

P6: 
   (n0>2.0) :- right(1.0) down(1.0) [forward(1.0) forward(1.0) ] 

[right(5.0) cntr-clockwise(2.0) ] increase-offset(n1) P4(n0-
2.0,n1+3.0) back(n1) left(1.0) 

   (n0>0.0) :- [right(1.0) revolute2(1.0) revolute2(1.0) left(1.0) ] 
[cntr-clockwise(n1) left(n1) up(n0) left(4.0) ] 

 
P7: 
   (n1>2.0) :- clockwise(n0) clockwise(n0) 
   (n1>0.0) :- [decrease-offset(1.0) forward(1.0) increase-

offset(1.0) ] clockwise(n0) clockwise(n0) 
 
P8: 
   (n1>5.0) :- forward(5.0) left(1.0) cntr-clockwise(1.0) 

clockwise(1.0) decrease-offset(1.0) forward(5.0) cntr-
clockwise(1.0) [clockwise(3.0) revolute2(1.0) left(1.0) ] 

   (n1>0.0) :- back(1.0) 
 
P10: 
   (n1>-2.0) :- forward(n1) P14(n1-5.0,n0/3.0) [increase-offset(3.0) 

increase-offset(1.0) right(1.0) ] [up(1.0) ] {right(1.0) }(2.0) 
   (n0>0.0) :- P14(n1-5.0,n0/3.0) forward(n1) [increase-offset(3.0) 

increase-offset(1.0) up(1.0) ] [up(1.0) ] {right(1.0) }(2.0) 
 
P12: 
   (n1>3.0) :- clockwise(2.0) up(5.0) up(4.0) 
   (n1>0.0) :- clockwise(2.0) forward(5.0) up(4.0) 
 
P14: 
   (n1>2.0) :- [P0(n0+1.0,n0/3.0) down(5.0) increase-offset(1.0) 

clockwise(3.0) ] down(n0) down(4.0) back(1.0) down(1.0) 

 
 
(Construction sequence has not been included do to its 
length) 
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down(1.0) decrease-offset(1.0) 
   (n0>0.0) :- up(1.0) right(1.0) forward(4.0) P14(2.0,n1-2.0) 

P8(3.0,n0+2.0) forward(1.0) clockwise(1.0) decrease-
offset(1.0) back(1.0) forward(1.0) increase-offset(1.0) 
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List of footnotes (besides those appearing on title page) 
 

3. However, note that because of the stochastic nature of the process, it is hard to determine 
definitely whether progress has actually halted, and improvements may still occur after long 
periods of apparent stagnation (Figures 1c and 1d). 

4. This real time lingering is amplified by the fact that evaluation time or duration of a 
generation (in simulation or in physical reality) also increases as solutions become more 
complex 

5. In a true dynamics simulator actual torques on joints would be calculated and then a 
constraint on the allowable torque could be used instead. 

6. The “M” and “Kayak” robots were evolved in runs that did not use the structural constraint 
limiting the maximum number of rods without a structural loop. 

7. Each experiment comprises 10 runs, with run evolving a population of 100 robots over 500 
generations.   In all 500,000 robot simulations were run in a period of approximately a 6 
months of computation time. 
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Figure Captions 

Figure 1. Progress of a typical evolutionary design run comprising only direct mutations. The 
abscissa represents evolutionary time (generations) and the ordinate measures fitness. Each 
point in the scatter plot represents one candidate design. In general, a logarithmic slowdown in 
progress can be observed, characterized by longer and longer durations between successive 
step-jumps in the fitness (a,b). Occasionally, however, progress is made after long periods of 
stagnation (c,d). 

 

Figure 2. Basic building blocks of the system: bars of regular lengths and fixes or actuated joints. 

 

Figure 3.  Sample L-Robot, (a) a construction sequence leading to a tri-star 2D robot with three 

actuated joints, (b) resulting robot, with joints at 180°,  and (c) with joints at 120° 

 

Figure 4. Evolved robots through non-generative and generative representations. (For full motion 

see videos at http://www.demo.cs.brandeis.edu/pr/evo_design/evo_design.html) 

 

Figure 5. The locomotion cycle of a 80-rod robot evolved using generative representation and 

reaching a fitness of 686. The robot moves by passing a loop from back to front. Frames (a-d) show 

four stages in the locomotion cycle. (For full motion see video at 

http://www.demo.cs.brandeis.edu/pr/evo_design/evo_design.html) 

Figure 6. Two parts of the locomotion cycle of an evolved two-dimensional robot “M”.  (a, b) 

Simulated, (c, d) physical. Notice regularity and symmetry. 

Figure 7. An evolved 3D robot “Kayak”, (a) Simulated, (b) physical. Notice the reuse of a T-

junction. 

Figure 8. An evolved 3D robot “Quatrobot”, (a) Simulated, (b) physical. Notice the reuse of the leg 

assembly. For video of the robots in motion see 

http://www.demo.cs.brandeis.edu/pr/evo_design/evo_design/html 
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Figure 9. Fitness over time, comparing non-generative representation with generated 

representation. Data averaged over 10 runs. 

Figure 10. Comparison of fitness versus number of parts: (a) non-generative representation; (b) 

generative representation.  One dot for the best individual of each generation for all 10 runs. 

Figure 11.  Comparison of fitness versus length of generating program, measured in number of  

elements in encoded design: (a) non-generative representation; (b) generative representation.  One 

dot for the best individual  of each generation for all ten runs. 

Figure 12. Comparison of fitness change per mutation, in (a) non-generative representation and (b) 

generative representation 

Figure 13. Evolution of a four-legged walking robot. 
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#3, Non-generative #4, Non-generative #6, Non-generative 

   

#7, Non-generative #9, Non-generative #1, Generative 

   

#2, Generative #5, Generative #11, Generative 

 
Figure 4 
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(a) Fitness: 348. (b) Fitness: 780. 

  
(c) Fitness: 1168. (d) Fitness: 1450. 

  
(e) Fitness: 2168. (f) Fitness: 2192. 

 
Figure 13 
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Table I: Design Language for 2D robot 

Command Description 
[ ] Push/pop orientation stack 
{ block }(n) Repeat enclosed block n times 
Forward(n) moves the turtle forward in the current direction, 

creating a bar if none exists or traversing to the 
end of the existing bar 

Back(n) Move up n levels of parents 
Joint(n) Forward, end with an actuated joint which 

oscillates at speed n 
Clockwise(n) Rotate heading clockwise n × 60° 
CounterClockwise(n) Rotate heading counterclockwise n × 60° 
IncreaseOffset(n) Increase current joint phase offset by n × 25% 
DecreaseOffset(n) Decrease current joint phase offset by n × 25% 
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Table II: Design Language for 3D robot 

Command Description 
[ ] Push/pop orientation stack 
{ block }(n) Repeat enclosed block n times 
Forward(n) moves the turtle forward in the current direction, 

creating a bar if none exists or traversing to the end of 
the existing bar 

Back(n) Move up n levels of parents 
Revolute1(n) Forward, end with a joint with range 0° to 90° about the 

current Z-axis that oscillates with speed n. 
Revolute2(n) Forward, end with a joint with range –45° to +45° about 

the current Z-axis that oscillates with speed n. 
Twist90(n) Forward, end with a joint with range 0° to 90° about the 

current X-axis that oscillates with speed n. 
Twist180(n) Forward, end with a joint with range -90° to +180° about 

the current X-axis that oscillates with speed n. 
Up(n) Rotate heading n times 90° about the turtle's Z axis 
Down(n) Rotate heading n times -90° about the turtle's Z axis 
Left(n) Rotate heading n times 90° about the turtle's Y axis 
Right(n) Rotate heading n times -90° about the turtle's Y axis 
Clockwise(n) Rotate heading clockwise n × 90° about the turtle's Z 

axis 
CounterClockwise(n) Rotate heading counterclockwise n × -90° about the 

turtle's Z axis 
IncreaseOffset(n) Increase current joint phase offset by n × 25% 
DecreaseOffset(n) Decrease current joint phase offset by n × 25% 
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Table III: Evolvability comparison 

Statistics for the experiments Non-
generative 
(Control) 

Generative 

Average fitness change –502 –173 

Standard deviation of fitness changes ±736 ±404 

% Successful mutations 11% 23% 

Average fitness change of successful mutations +104 +124 

% Cross correlation of success 20% 40% 

Success rate of large mutations (>100 characters) 2.3% 17% 
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